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A class of lattice models for a binary mixture is defined by assuming that 
one of the components may form bonds to neighboring molecules of the 
same species. It is assumed that the fugacity of a molecule depends on the 
number of bonds which connect the molecule to other molecules. If no 
molecule is allowed to be connected by more than two bonds to other 
molecules, then no phase transition occurs, while phase transition can occur 
if more than two bonds are allowed. If only two or no bonds are allowed, 
then the model can be solved rigorously for certain planar lattices by trans- 
forming it to a dimer covering problem; this model shows behavior similar 
to the Ising model in zero magnetic field. 

KEY W O R D S :  Polymer; hydrogen bond; phase transition;zeros of partition 
function; lattice model; binary mixture; ice-rule ferroelectric. 

1. I N T R O D U C T I O N  

Since the monumental achievement of Onsager m, the Ising model in two 
dimensions has provided for some time the only reasonably physical statistical 
mechanical description of the location and nature of a phase transition. This 
model gave important insight into the problem of critical behavior caused by 
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attractive forces in liquid-gas systems and binary mixtures of structureless 
particles. Unfortunately, it gives little insight into the importance of con- 
straints imposed by particle structure. Nevertheless, some rigorous results 
have been obtained on this problem. They include (1) the solution of the dimer 
covering problem on a planar lattice C2) ; (2) the proof by Dobrushin ~al of the 
existence of a phase transition in a hard-square model; (3) the proof by 
Lebowitz and Gallavotti ~1 of the existence of a phase transition in a system 
of hard rods on a square lattice; (4) the comprehensive treatment of the 
monome~dimer  problem by Heilmann and LieblS); (5) the ice-rule ferro- 
electrics a represent a rather different class of system with structural con- 
straints; their statistical mechanical behavior is quite well understood, but 
little has been published concerning their impact on the theory of binary 
mixtures. 

It is the aim of this paper to present rigorous results on a certain class 
of lattice models for binary mixtures with structural constraints. The second 
section describes a "soft" dimer model; this means that any vertex of the 
lattice may be either unoccupied, or occupied by one or, at most, two 
dimers. Each edge may be empty or covered by a single dimer. Clearly, 
this is a natural extension of the monomer-dimer model (which has "hard 
dimers"). One may, however, establish a more interesting interpretation 
of the soft dimer system as a model for a binary mixture one of the compo- 
nents of which may form up to two bonds with neighboring molecules of the 
same species. One might, for example, think of alcohol molecules, which 
can form hydrogen bonds according to the above prescription. It 
seems appropriate to call the above a chain-polymer model. The main 
result of Section 2 is that such a system cannot undergo a phase 
transition. 

In Section 3, this model is generalized by allowing the formation of 
more than two bonds from a given molecule. The result will be termed the 
branching-polymer model. In contrast to the chain-polymer model, it can 
exhibit a phase transition. 

Finally, in Section 4, the chain-polymer model will be restricted by 
only allowing zero or two bonds at each vertex. This will be termed the 
polygon model. It can be solved rigorously in certain cases on planar lattices. 
This property also holds for some branching-polymer models if the number of 
bonds meeting at any vertex is restricted to be either even or odd. This class 
of system may exhibit critical behavior. 

We should like to stress that we do not consider that the class of models 
described in this paper is new. In fact, one can find ideas along these lines 

4 For an excellent review, see Ref. 6. 
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in the book by Hurst and Green(V); also, Levine and Perram (s) investigated 
the statistics of hydrogen bond formation in water using a model of  this type. 

2. T H E  C H A I N - P O L Y H E R  H O D E L  

2.1. The Hodel 

In a given graph G, the vertices can either be occupied by a monomer 
unit or be empty. If  two neighboring points are both occupied by a monomer 
unit, then these two units can be joined by a bond. No monomer unit is 
allowed to be joined by more than two bonds to other monomers (the con- 
dition for chain polymers). Monomer units with zero, one, and two bonds 
are given fugacities zo, z l ,  and z2, respectively. 

If  z2 = 0, then one recovers the monomer-dimer problem. (5) If  z z = 0, 
then the case obtains in which only closed polygons are allowed; this will be 
considered in some detail in a subsequent section. It is possible to assign dif- 
ferent fugacities to different vertices and different bond energies to different 
edges. Just as in the monomer-dimer case, (~) this will not change essentially 
the analytical behavior or the principles of the proofs; it will, however, 
vastly complicate the notation; we shall avoid it in this article. One should 
note that the analysis in Sections 2 and 3 in general does not work if one 
allows the energy of a double-bonded monomer to depend on the angle 
between the bonds. 

The grand canonicalpartition function for the model is given by 

~ ( 6 ;  Z0 ,  Z1,  Z2) = Z2 N" P(G; (1 @- Zo)/Z2 , Zl/Z2) (1)  

where N is the number of vertices in G and 

N (N--n)/2 

F(a; xo, xl) = Z Xo Z 
n=O j=0 

2J #(walks; G, j, N n) (2) X 1 

#(walks; G, j, N -- n) is the number of possible ways to arrange j polymers 
with free ends and any number of polygons on G such that N -- n vertices 
are covered and no vertex is covered more than once. 

The model can be rewritten as a Monomer-Dimer  problem on a related 
graph G'. In order to obtain G' from G, one proceeds as follows (see Fig. 1): 
The original edges of G are conserved and are given unit edge weights in G'; 
they will be called external edges in G'. At each of the vertices in G, a new 
vertex (external vertex) is added for each of the incident edges such that edges 
are incident on separate vertices; these vertices are given monomer fugacity 
zero. Further, two new vertices (internal vertices) are added for each vertex 
in G; the two internal vertices are joined together by an edge with edge 

8zz/41I-z 



18 Douglas B. A b r a h a m  and O l e  J. H e i l m a n n  

(a! (b) 

Fig. 1. The transformation from the chain-polymer model to a monomer-dimer 
problem; (a) a vertex of the graph for the chain-polymer model; (b) the corresponding 
configuration in the graph for the monomer-dimer problem. 

weight w and each of them is joined to all the external vertices originating 
from the same vertex in G with edges having unit weight. The internal vertices 
are assigned monomer fugacities ma and m2 respectively. 

In the monomer-dimer problem, for a given graph with weights on both 
edges and vertices, an allowed configuration is any arrangement of dimers on 
the edges such that two edges incident on the same vertex are not occupied 
simultaneously. A dimer is supposed to cover the two vertices on which the 
edge is incident; vertices not occupied by dimers are filled with monomers. 
The fugacity of a dimer is the edge weight; the fugacity of monomer is the 
vertex weight. The canonical weight of a configuration is the product of 
the fugacities. 

The correspondence between configurations in the two models will be 
as follows: a bond along an edge in G corresponds to the absence of a dimer 
on the same (external) edge in G'. After the dimer configuration on the exter- 
nal edges in G' has been specified thus, one sums over the remaining degrees 
of  freedom in G', that is, the configurations on the internal vertices. Since 
the configurations on the pairs of internal vertices are independent of each 
other, this sum factorizes into separate factors for each of the vertices in G. 
I f  PMD(G') is the monomer-dimer partition function for G', we shall then 
derive the relation 

P(G' ; Xo , xO ~- fNPMD(G') (3) 

by proving that it is possible to choose ml ,  m~, w, a n d f  such that for each 
configuration on G, any vertex in G gives the same contribution as the cor- 
responding subgraph in G' does, aside from a factor f which is independent 
of the configuration. The appropriate conditions are 

Xo = (w + mam~) f (4) 

xz = On 1 + m2) f (5) 

1 = 2f  (6) 
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or, in a more  suggestive form, 

f = �89 (7) 

ml + m2 ----- 2xi (8) 

mlm2 = 2x0 - -  w (9) 

This shows that  we can choose w at will and then determine ml and m2 for  
any values o f  x and y. 

2.2. A Bound on the Location of Zeros 
of the Grand Part i t ion Function 

According to Hei lmann and Lieb, 15) a sufficient condit ion for  PMD(G') 
to be nonzero is that  the real parts o f  mz and m2 shall have the same sign. I f  
P(x) is a polynomial  in x with complex coefficients, one can readily infer 
f rom a theorem by Hermite and Biehler 5 a necessary and sufficient condit ion 
that all the roots o f  P(x) = 0 shall have real parts with the same sign. I f  one 
writes 

P(ix) -~ Q(x) q- iR(x) (10) 

where Q(x) and R(x) are polynomials  with real coefficients, then the condit ion 
is that  Q(x) and R(x) should have all zeros real and further that  the zeros o f  
Q(x) should interlace the zeros o f  R(x) [this implies that  the degrees o f  Q(x) 
and R(x) can at most  differ by one]. 

These conditions are applied to the polynomial  

P(z) = z 2 -- 2XlZ -~- 2Xo - -  w (11) 

which, according to Eqs. (8) and (9), has zeros at mz and m2 �9 One obtains 

P(iz) = - z  2 - / 2 ( I m  xl)z + 2 ( R e x o ) - W  + i[-2(Rex~)z + 2(Imxo)] (12) 

The zeros of  

Q(z) = - z  2 -k 2(Ira Xl)Z -k 2(Re Xo) - -  w (13) 

are 

while 

z = (Im xl) :k [(Im xl) 2 § 2(Re x0) - -  w] z/2 

R(z) = - -2(Re  xOz -k 2 Im  Xo 

(14) 

(15) 

5 See, e.g., Ref. 9. 
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has the zero 

z = (Ira Xo)/Re xz (16) 

I t  obviously preferable to choose 

w = 0 (17) 

which leads to the following condit ion (see Fig. 2): 

2(Re xo)(Re xl) 2 + 2(Ira Xo)(Im Xl)(Re xl) - -  ( Im x0) ~ > 0 (18a) 

The  above  discussion implies that  the grand canonical  part i t ion function 
cannot  be zero if (18a) is satisfied, with 

x0 = (1 + Z o ) / Z 2 ,  x l  = z l / z 2  (18b) 

Since the equivalent m o n o m e r - d i m e r  description has zero m o n o m e r  
weights, it is not  very useful for  the analysis o f  the behavior  for  small bond  
energies, nor  is it useful to prove  the existence of  the the rmodynamic  limit. 
F o r  this purpose,  it is more  expedient to make  the t ransformat ion  to a lattice 
gas with pair  interactions. 

D e f i n i t i o n .  For  a given set o f  points  S, one has a mapp ing  f rom the set 
K of  unordered  k-tuples of  distinct points  in S into the set o f  nonnegat ive 

I"m (x)/Re(y) 

Fig. 2. The bound on the zeros imposed by Eq. (18a). One should take x = (1 + zo)/z~ 
and y = zl /z2 �9 The zeros are confined to the shaded, hyperbolic area; the slope of the 
oblique asymptote is 2. It is assumed that the real part of x is positive. 
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real numbers, z: K-+  R+. One defines the subset K§ of K by {k: k ~ 1s z(k) > 0} 
and one further has a mapping from the set Ks of unordered pairs of  elements 
in K+ into the real numbers, U: K2 --+ R. An allowed configuration of n k-reefs 
on S is then any set of  n elements k l ,  k2 ..... k,~ of  K+ such that no point of  S 
occurs in more than one of the n k-tuples k~, k2 ..... k~.  The canonical 
measure Q(k~, k2 ..... k~) of the configuration is then given by 

( i , j )  i=J_ 

The canonical partition function for n k-mers then becomes the sum over all 
allowed configuration of n k-tuples: 

Qn(S, z, U) = Z Q(k I , . . . ,  kn) (20) 
( k  1 . . . . .  lc n)  

and the grand canonical partition function can then be written as 

3(s,  z, U ) =  1 4- ~ Q~(S, z, U) (21) 
n=l 

2.3. Equivalence to a T r imer  Problem 

The set S shall contain one point for each edge in G, and two points for 
each vertex in G. The set K+ shall contain four elements for each edge in G, 
namely, the four three-tuples which can be formed by taking the point 
corresponding to the edge and for each of the two vertices on which the 
edge is incident, taking one of the two corresponding points in S. The fugacity 
z will be 

z = ~z12/(1 4-Zo) ~ (22) 

i.e., �88 times the relative fugacity of a dimer on G. U should be zero for any 
pair in K+ such that the corresponding edges in F are not incident on the same 
vertex. I f  they are incident on the same vertex, then U should be given by 

e -U = 2z2(1 4- Zo)/Zl 2 (23) 

I t  is not difficult to perceive that 

3(G; z0, z~, z2) = S(S ,  z, U)(1 4- z0) ~ (24) 

2.4. Another  Bound on the Location of Zeros 

One can now apply Ruelle's theory (1~ for the solubility of  the Kirk- 
wood-Salsburg equations to the trimer model given above. 6 I f  one defines 

e ~ = max{[ e -U 1, 1} (25) 

6 The theory of Gallavotti and Miracle cz2~ cannot be applied since their theory of a lattice 
gas is limited to a monomer gas. 
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and 
C ~ 4 q - -  1 q - 4 ( q - -  1)]e - v -  11 (26) 

where q is the maximum coordination number of the vertices in G, then one 
finds that S(G; zo, z l ,  z2) is not zero if 

~- I Za2/(1 @ Z0)2! < e-~B-1C -1 (27) 

2.5. Thermodynamics 

Since the model in its original formulation cannot be described by a 
simple classical potential, the question of whether the model possesses a 
thermodynamic limit cannot be settled by a direct reference to the well- 
known work by Fisher (18) and Ruelle(~). v Fortunately, the trimer version is 
a genuine classical hard-core model; as a consequence, one has the following 
theorem. 

Theorem 1. Let L be a lattice which has the usual property of 
translational invariance 8 and which has vertices with finite coordination 
number. If  one considers a sequence of section graphs G of the lattice L such 
that the sequence tends to infinity in the sense of Fisher, 9 then the following 
limit exists and is unique: 

p(zo ,  zl ,  z0) = ~m (l /N) log[3(6;  z0, z l ,  zz)] (28) 

provided z~ > 0. The pressure p is an increasing function of the fugacities. 
Ruelle's theory applied to the trimer version implies that in the thermo- 

dynamic limit defined in Theorem 1, correlation functions exist in the region 
given by Eq. (27) and are analytic there. When one applies the theory of the 
monomer-direct problem to the region given by (18), one can deduce that 
the correlation functions are uniformly bounded in any closed subdomain of 
that region. Since the intersection of the region given by Eq. (18) with the 
region given by Eq. (27) is nonempty, the following is seen to result by appli- 
cation of Vitali's theorem. 

T h e o r e m  2. If  one takes the thermodynamic limit as in Theorem 1, 
then the correlation functions exists in the union of the regions given by Eqs. 
(18) and (27) and both correlation functions and the pressure p are analytic 
in this region. 

Finally, we shall consider the problem of whether the compressibility is 
finite. For a general fugacity z~, one defines the corresponding density by 

p~ = z~ dp/dz~ (29) 

7 See also Ruelte, (11) Chapter 3. 
8 Essam and Fisher, (1~) Definition 2.32. 
9 Fisher~Z3) and Ruelle, (m Definition 2.1.2. 
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and the compressibility X by 

Xi = (}o~ -1 dpi /dzi )  -1 (30) 

I f  the compressibility is finite and p(z )  is analytic in z, then the inverse function 
z (p)  will also be analytic (the inverse function will always exist since the 
compressibility can never be negative). 

We define the monomer  unit fugacity z~,~, the bond fugacity zb, and the 
free-end fugacity z~ by 

Zo = z~,~ ; z l  = z~z~/~z,~ ; z~ = zbzm (31) 

and get corresponding densities On, pb, and p~ by Eq. (29) and the compressi- 
bilities X .... Xb, and X, by Eq. (30). By substituting z~ ,  z , ,  and zb for z0, z z , 
and z~ in the earlier equations, one obtains for the monomer-dimer  version 
[Eqs. (8) and (9)] 

m l  q- m~ = 2z~z~ 1/2 (32) 

mzm~ = 2(1 -~ z.~) z ~ z ~  ~ - -  w (33) 

By choosing w such that m~rn2 becomes zero, one finds that monomer-d imer  
theory requires that 

X~ > 0 (34) 

Similarly, one gets for the trimer version [Eqs. (22) and (23)] 

z = ~zbz~2z~2/(1 -]- z~ )  ~ (35) 

e - v  = 2(1 q- zm) z72z~ 1 (36) 

which shows that when Ginibre's result a6) is applied to the trimer version, 
it implies 

X~ > 0 (37) 

We have not been able to prove X~ > 0, although we expect it to hold. 

3. THE  B R A N C H I N G  POLYMER M O D E L  

The model is similar to the chain-polymer model; but instead of having 
a maximum of two bonds joining a monomer  unit, one is now allowed to 
have up to n bonds joining the same monomer  unit to others. We shall use 
z i ,  (i ----- 0, 1 .... , n), for the fugacity of  a monomer  unit with i bonds. 

The remarks about  generalization to the case with fugacities dependent 
on the vertices carry over immediately to this model. Moreover, the definition 
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of  the grand partit ion function should not  either produce any special compli-  
cations. 

3.1. Rewrit ing the Model as a M o n o m e r - D i m e r  Model 

The recipe for the chain-polymer model applies essentially unchanged;  
one should just  add n internal vertices in G' instead o f  two for  each vertex 
in G. The m o n o m e r  fugacities for the n internal vertices become m l ,  rn2 ..... m~ 
and the weights on the edges joining these vertices become wz2, Wlz ..... w,_a,~ �9 

Using the same rules for  the correspondence between conf igura t ions ,  
one can deduce the following system of  equations: 

1 + z o = f P L  

(38) 
z i  ~- f " i! " ~ P M , i ~ 1,2  ..... n 

gaM~n--i 
M C,/V" 

where the sum runs over all subsets M with n - -  i members taken f rom the 
set o fn  integers JV -~ {1, 2,..., n} and where P ~  for M = {1, 2 ..... i} is given by 

Po = 1 (39) 

e~l~ = M~ (40) 

i --1 

P{~,2 ... . .  i} = miP{1,~ . . . . .  i-1} -~- 2 wLiP{1,2 ..... J - l , S + l  . . . . .  i - 1 }  (41) 
j = l  

(The analogous formulas for  M not  being the first i integers should be trivial 
to produce.) I f  one looks at Eqs. (38) for i = n, n - -  1, and n --  2, they 
strongly suggest that  it is advantageous to set w12 = w~a . . . . .  w~_~,,~ = 0 
if one wants to find as large parts of  the real axis of  z 0 , z I ..... z~ as possible 
included in the zero-free domain. Since this agrees with the findings for the 
chain-polymer model  and since it vastly facilitates the computations,  we 
shall assume that. Then, P M  degenerates to 

P M = I ~  m i  (42) 
i e M  

and 

S~-= ~ PM (43) 
MC,A r 
# M = j  

become the elementary symmetric functions of  the numbers  rn~., j = 1, 2 ..... n. 
Setting 

f = z , j n !  (44) 

x~ = z J z , ,  i ---- 0, 1 ..... n --  1 (45) 



Latt ice  Models  for  Hydrogen-Bonded Solvents 25 

Eqs. (38) become 

S n _  i = X i " n!/ i! ,  i -= O, 1 .... , n - -  1 (46) 

In order to facilitate the computations further, we shall restrict ourselves to 
find the intervals on the real x/axis  (i = 0, 1 ..... n -- 1) such that the grand 
partition function is nonzero in a neighborhood in the combined complex 
planes. To do this, we apply the Hurwitz theorem 1~ (which is consequence of 
the Hermite-Biehler theorem). From this, we get that a necessary and suffi- 
cient condition for rn~ to have positive real part is that the determinants 

& so 0 0 
Dk = Sz. $2 $1 So 

$2/c-1 $2/c-2 . . . . . .  

are all positive. One should define 

so = 1 and 

- . -  S k 

k =  1,2,. , n  (47) 

S k = 0  for k > n  (48) 

For  n >~ 3, this condition does not allow one to include all real values 
in the area in which the grand canonical partition function is nonzero. For  
example, when n = 3, one finds the condition 

3x2xl -- Xo > 0 (49) 

3.2. The Problem as a T r i m e r  Problem with n-body interaction 

Again only minor changes from the case of the chain-polymer model are 
necessary. One should have n points in S for each vertex in G. The set K+ 
shall contain n 2 elements for each edge in G made according to the same 
principle of taking one point for each end point of the edge out of the cor- 
responding set of n points. The fugacity z will be given by 

z = (1/n 2) z? / (1  + Zo) ~ (s0) 

One will now have to prescribe nonzero j-body interactions, with 
2 ~< j ~< n, between trimers corresponding to edges incident on the same 
vertex. With Uj for the j -body interaction, one gets the following set of 
defining equations: 

_ _  ( n - - j ) !  zj (1 zl  )_j~-l~i exp [(~) ]U/, 
e-t~J - -  n! (1 + z0) 1 + z 0 i=2 

10 See, e.g., Obreschoff, (9) Section 23.2. 

j = 2, 3,..., n 

(51) 
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3.3. Thermodynamic  Behavior 

From the above transformation to a trimer problem one can of course 
still infer the existence and uniqueness of  the thermodynamic limit for a 
sequence of section graphs G of a lattice L, provided the limit is taken in the 
sense of Fisher, and z~ > 0. 

However, since we have been forced to include n-body interactions 
(n ~> 3) in the trimer description, we can no longer apply Ruelle's theory 
to get a bound on the zeros similar to Eq. (27). Neither can we prove the 
existence of correlation functions in this case. We do, of course, believe that 
correlation functions exist almost everywhere, and also that a bound on the 
zeros similar to Eq. (27) obtains. 

The most important change is, of course, that we can no longer prove 
the absence of phase transitions. We believe that this is significant; the branch- 
polymer model will indeed show phase transitions for certain ranges of  
the parameters if the dimension of the lattice is higher than one. 

In a special case, this is immediately clear. I f  n is equal to the coordi- 
nation number q of the lattice and if 

z~/z~_l  = z b ,  i = 1, 2 , . . . ,  n (52) 

then the energy of the bonds is zb z independently of  the total configuration 
and the model is consequently equivalent with the usual (monomer) lattice 
gas with pair interaction U given by 

e - V =  1 + zb 2 (53) 

The phase transition in this case follows by well-known theorems from the 
fact that U is clearly negative, corresponding to an attractive lattice gas 
(a similar observation has been made by Levine and PerramlS)). 

4. T H E  P O L Y G O N  M O D E L  

4.1. General 

In this section, we shall consider the effect of restricting the chain model 
to za = 0. In Section 2, this represented a limiting case for which theorems 
about analyticity did not hold; this fact of course engenders a certain 
interest. Since it further turns out that this model can be solved exactly in 
certain cases, then we think it might be worthwhile to reflect on the possibility 
of taking the restriction zz = 0 as an approximation to actual problems. 

We shall start by changing the notation from the previous sections. A 
vertex without bonds will be termed a hole and it will be assumed to have 
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fugacity z. A bond between vertex i and vertex j will be assumed to have 
canonical weight w~-. 

We shall allow the possibility of  different weights for different bonds, 
since it turns out that the anisotropic case has some special features. 

I f  the lattice has coordination number 3, then the problem is equivalent 
to an Ising model on the same lattice. This can be seen as follows: it is well 
known that if one uses edge weights 

w i / z  = wij ~ tanh(--Ji j)  (54) 

where J~3" is the Ising interaction between spins at vertices i and j ,  then the 
Ising partition function, aside from a trivial factor, is identical with the sum 
over all polygon configurations with weights equal to the product of  the 
weights of  the sides in the polygons. In the Ising version, however, one may 
have any even number of polygon sides going into the same vertex as long as 
the edges are covered at most once, but this difference disappears when the 
coordination number is smaller than 4, and the statement is consequently 
correct. 

The usefulness of  the analogy is unfortunately limited by the fact that 
for wij /z  > 1, one moves out in an unphysical region of the Ising model 
where Jij has an imaginary part  �89 I f  the exact solution to the Ising problem 
is known, this is of  course of  minor importance; for three-dimensional 
problems, it seems that one cannot settle the question of phase transition 
for w~j/z > 1 by reference to known results. 

4.2. The Hexagonal Lattice 

The hexagonal lattice is an example of  a planar lattice with coordination 
number 3 and as such solvable by reformulating the problem as an Ising 
model on the same lattice. We shall consider the full anisotropic problem. 
The weights of  bonds in the three directions will be Wl, w2, and w3, respec- 
tively. The pressure p is then given by 11 

a(O,  ~)  = z 4 + w12w= = + w=2w3 ~ + w~=w3 ~ 

- -  2 w l w ~ ( z  ~ - -  w3 ~) cos(O - -  ~) 

- -  2N1W=(Z 2 - -  w 2 g ) ( c o s  O) - -  2N2W=(Z 2 - -  Wl 2) COS (fi ( 5 6 )  

2I A review of the first solutions of the Ising model for the hexagonal lattice can be found 
in Ref. 17. We have taken the formula from Ref. 7. 
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This expression is valid for all values of z, w~, w2, and w~, while it is 
only when 

0 <~ wJz  ~< 1, i = 1, 2, 3 (57) 

that, as stated above, the result corresponds to a physical region of the Ising 
model on a hexagonal lattice. Here, this inconvenience can be overcome by 
transforming to the dual (triangular) lattice. If  one numbers the directions 
in the triangular lattice as the direction in the hexagonal lattice on which 
they are orthogonal and defines the interactions in the triangular Ising 
lattice J~, J2, and J~ by 

e zsi = wi/z, i = 1, 2, 3 (58) 

then one can easily check that the grand partition function for the polygon 
problem 3vol(Hex; z, w~, w2, w3) is related to the partition function for the 
lsing problem Zis(Yri; Yl, J2, J3) by 

3vo1(Hex; z l ,  wl,  w2, w3) = zNe%+S~+s3)~Zis(Tri; J1, J~, J3) (59) 

The case (57) corresponds to the ferromagnetic case on the triangular 
lattice, while 

wJz  > 1, i = 1, 2, 3 (60) 

corresponds to the antiferromagnetic case. The two mixed cases 

w~/z > 1; 

and 

w~/z < 1; 

can be transformed to the 
respectively, by the transformation 

w2/z < 1; w3/z < 1 (61) 

wz/z > 1; wa/z > 1 (62) 

antiferromagnetic or the ferromagnetic case, 

w2z -1 --~ zw~ 1, w3z 1 ~ zw~ 1 (63) 

which can be achieved by extracting a factor w2 z wa 2 z -~ from A (0, ~). One 
consequently obtains the relation 

p(z, wl , w2, w3) = p(z, w l ,  w[ 1, w~ 1) + log w2 -k log w3 -- 2 log z (64) 

Stephenson (18) has recently published detailed formulas for the aniso- 
tropic triangular lattice and the integral (55) has also been analized by Fan 
and Wu, (19) so we shall here only state the more important result in our 
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notation. 
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The double integral (55) can be transformed to a single integral 

2 n  

P = -- k log 2 + (1/8~) f dO log[A2(0) + D2(0)] (65) 
0 

where 

A2(O) = z 4 + W12W22 N l- W22W32 @ W12W32 - -  2wzwa(z  2 - -  w22) cos 0 (66) 

D2(O) = [z 4 - -  w12w2 ~ - -  w2~wa 2 + w~w32 - -  2 w l w ~ ( z  2 + w2") cos 0] 2 

+ 16z~w12w22w~ 2 sin20 (67) 

The density of bonds in the direction i, p~, in our notation corresponds 
to the energy contribution from the direction i in the Ising model. One obtains 

with 

2z: 

P2 = w2 ~p/~w~ = ~ + (1/87r) f dO E2(O)/[D2(O)]l/2 
0 

(68) 

E2(O) = z 4 + w12w22 + w~2w32 - -  w12w32 + 2 w l w 3 ( z  2 + w~ 2) cos 0 (69) 

The expressions for Pl and pz can be obtained by permuting the indices. The 
density of holes is then given by 

p ~ =  1 - - p i - - p 2 - - p 3  (70) 

The critical conditions become 

z 2 = wlw~ + w2wa + w3wi  (71) 

z 2 = wiw2 - -  w~w3 - -  w3wl  (72) 

z ~ = waw~ -k  w2w3 - -  w3wi  (73) 

z ~ = wlw~ - -  w~w3 + w3wl  (74) 

The first condition will admit of a positive solution for z for any (positive) 
values of w~, w2, and wa; of the other three, one at most will give a real 
solution for z. Assuming that 

wl ~ w2 /> w~ (75) 

one finds that only Eq. (72) can be satisfied for z nonnegative; the condition 
for solution becomes 

1 - -  ( w J w l )  - -  ( w J w 2 )  > 0 (76) 

I f  equality holds in Eq. (76), then z = 0 is a solution of Eq. (72). 
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Fig. 3. 

Z 

One of the possible phase diagrams for the polygon model on the hexagonal 
lattice. 

Assuming that wi,  (i = l, 2, 3), depends on temperature  in the usual 
manner  

wi = e -Bye, i = 1, 2, 3 (77) 

one finds the four different T-z phase diagrams shown in Figs. 3-6. Figure 3 
is obtained for 

U~ + U~ + U~ <~ O 

Figure 4 is obtained for 

g l < - - g ~ ,  

Figure 5 is obtained for 

U~ + U2 + U~ > O 

g l  ~ - - g 2  

/ ~ 
// I\\ 

/ ~\ I I\ ~ ~  

E ~ z 

Fig. 4. The second of the possible phase diagrams for the polygon model on the 
hexagonal lattice. 
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Fig. 5. 

) _ 
z 

The third of the possible phase diagrams for the polygon model on the 
hexagonal lattice. 

Figure 6 is obtained for 

U I > - - U  2 

The horizonally shaded area corresponds to an ordered phase with long 
chains and few bonds in the least favored direction, 3. The oblique shaded 
area corresponds to an ordered phase with few bonds, the bonds being 
arranged in small polygons. The unshaded area corresponds to a disordered 
phase. 

There is a certain interest connected with the case when D ( O )  [eq. (67)] 
is a perfect square (i.e., a square of  a linear function of cos 0). This occurs 
when 

z 2 = w l w 2  + w 2 w 3  - -  w l w 3  (78) 

z 2 = w l w 2  - -  w 2 w 3  + w l w ~  (79) 

z ~ = - w l w 2  + w2w~ + wlw3 (80)  

/J / l  
I / i] /I 

Fig. 6. 

z 

The fourth of the possible phase diagrams for the polygon model on the 
hexagonal lattice. 
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It  is easily seen that  the values of  z 2 given by Eqs. (78) and (79) fall 
between the values given by Eqs. (71) and Eq. (72). While the condition (80) 
coincides with (72) for z ~ 0, The three lines defined by Eqs. (78), (79), and 
(80) are shown as dashed lines in Figs. 3-6. The curve crosses the line z = 1 
if, respectively, 

sign(U2), sign(U1 -? U2) ~ --1 (81) 

s ign(U0-  sign(U1 + U2) = --1 (82) 

sign(U3) < 0 (83) 

I f z  = 0, then D(O) will also be a perfect square. Since the phase transition 
then occurs at the crossing of  another line for which D(O) is a perfect square, 
one might expect peculiar behavior;  in fact, one finds behavior similar to 
the modified K D P  model on a square lattice. (~~ For  T less than the 
critical temperature, one finds that  the free energy is given by 

p = �89 (84) 

and the density of  bonds in the i ' th  direction is consequently constant:  

pl = P2 = �89 P3 = 0 (85) 

The densities for T above T~ are given by 

Pi ~- (Oi/7r) - -  •, i = 1, 2 (86a) 

P3 = ~ --  [(01 § 02)/7r] (86b) 

0t = cos-a[--(wl~w22 § w12w32 --  wz2w32)/(2wzwzwl~)] (87a) 

0~ = cos-l[--(w12w22 - -  w12w~ 2 § w22w32)/(2WlW~W22)] (87b) 

where 01 and 02 should be chosen in the interval between 0 and ~v; actually, 
one has 

~-Tr ~< 0, ~ 7r, i = 1, 2 (88) 

The compressibility will show a square-root  divergence as T approaches Tc 
f rom above. 

I t  is interesting to notice that  the case z = 0 is also in another respect 
similar to the ice-rule models on the square lattice, insofar as the isotropic 

zz It is not very surprising that the modified KDP model and the polygon covering of the 
hexagonal lattice show the same behavior, since both can be reformulated as the dimer 
covering problem on the hexagonal lattice. For the polygon covering, one merely makes 
an interchange of covering and noncovering of the edges; for the modified KDP model, 
one can find the rewriting in Ref. 21. 
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case shows a residual entropy. This was calculated by Wannier (2~"~ to be, 
per site, 

7r/6 

s = (3/7r) J0' ln(2 cos 0) dO = 0.32206 (89) 
P 

Aside from the special case z = 0, then, the phase transition will always 
be accompanied by a logarithmic divergence in the compressibility. 

4.3. The Square Lattice 

The general polygon model on the square lattice corresponds to the 
eight-vertex problem 161 (see Fig. 7), with the following relations for the 
weights of  the vertex configurations coi, i = 1, 2,..., 8, 

col = z, co2 = 0, co5 = c%, co7 --  cos (90) 

I f  one only distinguishes between bond directions and not between 
valence angles, then one further gets 

co3 = w v ,  co4 = w h ,  co5 = c% = co7 = cos = (wt ,  w~)  1/2 (91) 

with wh for the weight of  a horizontal bond and w~ for the weight of  a vertical 
bond. 

Unfortunately, neither the general case (90) nor the more special case (91) 
has known solutions except if one includes further assumptions. This is 
caused by the necessity for the assumption col # co2.13 The special case 
z = 0, which is closely related to the well-known ferroelectric problems, 
will be discussed briefly at the end of the section. The only case with z ~ 0 
for which a solution has been published is the case 

w7 = cos = 0 (92) 

which is Wu's modified K D P  model. <2~ Since this model conserves the 

13 It is essential for application of the analogy between the "ferroelectric" models and the 
one-dimensional anisotropic Heisenberg model that one has o~1 = oJ~ and o~ = ~o4.~ TM 

§ 2 4 7 2 4 7  

w E uJ 2 uJ 5 U: 4 to  5 w 6 eJ 7 w 8 

Fig. 7. The eight different vertices of the ferroelectric problem together with the 
corresponding configuration of bonds in the polygon model. 

822/4/z-3 
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number of polymers proceeding in the diagonal direction from lower left 
to upper right and thus does not allow closed polygons or s-shaped wiggles, 
it is of interst primarily as a limiting case. 

If  one imposes the restriction 

503(04 = 6050) 6 @- (.070) 8 (93) 

in addition to Eq. (90), then the model can be solved by the Pfaffian technique, 
a fact first observed by Fan and Wu. ag) The condition (93) will not hold for 
all temperatures if one assumes the normal temperature dependence 

~oi : e -s~'~, i : 3, 4, 5, 6, 7, 8 (94) 

This difficulty can be overcome either by introducing the condition (92) or 
by assuming another temperature dependence. The simplest possibility 
seems to be inclusion of entropy factors; (93) will then be satisfied if one 
assumes 

o r  

coi = 2e -sU~, i = 3, 4 

*oi = 2e -e~,  i = 5, 6, 7, 8 

U a +  U ~ =  U~+ U~ = UT+ U8 (95) 

~oze% = 2oJsoJ 6 = 2097(.08 (96) 

We shall, for the sake of generality, investigate the full problem with only the 
restriction (93) added to (90). The integral formula for the pressure can be 
found in Fan and Wu's paper c19) and we shall not rederive it here. We would, 
however, like to point out that the assumption co2 = 0 implies that we can 
perform the analogous dimer covering problem on a simpler lattice, namely 
the bathroom-tile lattice with one diagonal in the squares (see Fig. 8). The 
formula for the pressure becomes 

2~ 2~ 

= (1/Srr ~) f dO ~ de log[A(0, r P (97) 
0 0 

A ( 0 , 4 ) = z 2 + 0 9 3  ~+~~ ~ + 2 z % c o s 0 + 2 z % c o s r  

+ 2(wao) 4 -- oJ52) cos(0 -- r -5 2(oJaco 4 -- co7 ~) cos(0 + r (98) 

As usual, one can carry out one integration which gives the expression 

2~r 

= -- �89 log 2 -t- (1/4~r) f dO log[A(0) -}- D(0)] P (99) 
d 0 
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"a 

_ /  

/ 

/ 

(a) 

0 2 0 3 

i l 

(b) 

0 3 0 2 

F i g .  8. ( a )  T h e  b a t h r o o m - t i l e  l a t t i c e  w i t h  a c o r r e c t  a r r o w  a s s i g n m e n t  f o r  t h e  P f a f f i a n  

method. (b) The unit cell, with bond weights shown. For the general model, co z = ala4, 
1/2 = a2a~/2. For the staggered Wu model, co 2 : O, co 3 = a22 @ a32~ ~4 : a4 , ~% = a3a  4 ~ 0~7 

a factor zz N has been extracted from the partition function. Then, al -- 0, as = w~/z, 
aa = w~/z, a4 : 1. 

with  

A(O)  = z 2 + o)32 + co42 + 2zo)3 cos 0 (100) 

D(O) = (z z + o)a 2 - -  coa 2 + 2zo)a cos 0) 2 + 16o)s2o)72 sin 2 0 (101) 

This  express ion  for  p is, as can  be seen, r a the r  s imi lar  to  tha t  which  

ob ta ins  for  the h e x a g o n a l  lattice.  The  cri t ical  cond i t i ons  for  the p re sen t  case 

a r e  

z = o)a + o)4 ( t02)  

z = o)3 - -  o)~ (103) 

o r  

z = o)4 - -  o)3 (104) 

As for  the hexagon a l  lattice,  we f ind one  phase  t r ans i t ion ,  (102), for  all  va lues  
o f  o)3 a n d  o)~ a n d  one  m o r e  in  the an i so t rop ic  case, o)3 ~ o)~. I t  is i n t e res t ing  

to not ice  tha t  the va lues  o f  o)5 a n d  o)7 do  n o t  en te r  the  crit ical  cond i t ions .  
The  cond i t i ons  for  D(O) to be  a perfect  square  are 

zZ = (o)3 - -  o)4) z -5 4o)52 (105) 

z 2 = (o)3 _ o)~)2 § 4o)7z (106) 
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I t  is easily seen that only for c% = 0 or co 7 = 0 it is possible to have one 
of the critical conditions (102)-(104) satisfied simultaneously with D(O) 

being a perfect square. We consequently have that the phase transition is 
accompanied by a logarithmic singularity in the compressibility, except 
when c% == 0 or co 7 = O. 

Earlier in this section, the unphysical aspect of  the polymer interpretation 
of the Wu-modified KDP model was described. In fact, there are two equi- 
valem versions of the Wu model: either c% = c% = 0 or ~o7 = ms = 0. 
Closed polygons in the interior of  the lattice may be allowed simply by 
introducing the s t a g g e r e d  W u  m o d e l ,  in which the weights alternate on the 
two sublattices of the square lattice, as shown in Table I. 

The grand canonical pressure is readily obtained as a dimer covering 
by the Pfaffian technique. I t  is curious that we again obtain a covering of the 
bathroom-tile lattice shown in Fig. 8(a), with translationally invariant dimer 
weights. The basic unit cell is shown in Fig. 8(b). 

The grand canonical pressure in the thermodynamic limit is given by 

p = ( 1 / 4 r r )  z f~dO (2'~dcfi log A(0, ~) 
0 ~ 0  

(107a) 

where 

A(O, r = z ~ + (wt, 2 q-  w~2) ~ - 2z2[wj9  cos(0 - qS) q- w, 2 cos(0 ,-l- r (107b) 

The integral (107a) is closely related to the one obtained by Onsager (1) for 
the rectangular Ising model. Clearly, A(O, r ) 0; equality is obtained when 
b o t h 0 =  r  and 

w~ 2 § w~ ~ = z 2 (108) 

This, then, is the critical condition. It is to be noted that the introduction 
of anisotropy (w~, =/= w~) does not give rise to an additional transition, unlike 
the previous model. This feature can be readily understood from an intuitive 
point of  view. 

By inspection of (107a), it is easy to see that the z density is continuous 

ii 

Sublattice 

Table I. Vertex Weights for the Staggered W u  Model 

031 s 2 0/~ (~0 4 ~0 5 ~0 6 OJ 7 ol  8 

z 0 w~ w~ 0 0 

i i 

0 0 

(w~w~)~/~ (w~w~)il -" 
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at the critical point given by (108), but that the z compressibility has a 
logarithmic singularity there, independent of the degree of anisotropy. 

Finally, we shall consider the polygon covering case, z = 0, for the square 
lattice. With coz = co2 = 0, the model reduces to the six-vertex problem. 
However, the most general polygon covering of the square lattice with 
translationally invariant weights corresponds to a staggered ferroelectric 
problem. Since the staggered ferroelectric problem has not yet been solved, 
except for rather special cases, we are still forced to place a further restriction 
on the weights. The most interesting case obtains when 

co 3 = co~ = co s (109a) 

co~ = coo = c~ = cos = cob (109b) 

This corresponds to the F-model, (~4) which has an infinite-order phase transi- 
tion at 

co t = 2c% (110) 

The low-temperature, ordered state favors vertices 3 and 4. 

4.4. Discussion 

The rigorous results obtained above for the hexagonal lattice and the 
square lattice seem to indicate the following general behavior of the polygon 
model for lattices of dimensions greater than one: 

The model has always a second-order (?) phase transition for a relatively 
large value of z (and low density of bonds), with the ordered state having 
few bonds. 

If  the lattice is anisotropic or if a particular valence angle is favored, 
then another phase transition might occur at low values of z (and high 
density of bonds), with the ordered state having long polymer chains where 
the favored bond direction (valence angle) dominates. 

The first of these two possible phase transitions seems to have little 
physical significance, since it occurs under circumstances where the total 
exclusion of  free ends appears to be a very unreasonable assumption. 

The second phase transition may well be of greater physical significance. 
The low density of holes gives the model a reasonable resemblence to amor- 
phous polymers, in which case the phase transition should correspond to the 
glass transition. There are, however, two obvious objections to this inter- 
pretation. The glass transition is not connected with anisotropy of the system, 
which leaves only the possibility of a favored valence angle, a case which has 
only vague support in the obtained rigorous result (the polygon covering 
of the square lattice). More serious is the fact that the model does not conserve 
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the length of the polygons, which is equivalent to the molecular weight of 
the polymers; actually, there does not even seem to be any way of obtaining 
information about the distribution of polygon sizes. The phase transition 
might therefore very well be accomplished primarily by braking of bonds and 
change in the molecular weight distribution. 

A P P E N D I X :  N O T E  ADDED AFTER C O M P L E T I O N  OF W O R K  

C. Gruber and H. Kunz have kindly drawn our attention to the possible 
application of their general theory of polymers (2~) to the present case. We shall 
start by defining a polymer in our sense. 

Definition. A polymer is a set of monomer units which are connected 
by bonds and which are not connected by bonds to any monomer units 
outside the set. A polymer can be viewed in graph terminology as any con- 
nected subgraph of the lattice. It should be noted that the bonds are sufficient 
to specify the polymer, while the placement of the monomer units on the 
lattice does not necessarily specify the polymer. If  P is a polymer, then we 
write [P] for the set of vertices in P. I f j  is a vertex in P, j e [P], then we write 
z(j) for the fugacity of the monomer unit on that vertex [z(j) given in accor- 
dance with the definition of the branching-polymer model or the chain- 
polymer model by the number of bonds in P which are connected to the 
monomer unit]. We then get the total fugacity r  of the polymer P from 

r = ~ z(j) (A.1) 
je[P] 

The polymer concept introduced here is not the same as the concept 
given by Gruber and Kunz. They associate a fugacity ~(S) with any subset 
of vertices S and consider any subset with nonzero fugacity as a polymer. 
However, making the connection 

q~(S) :  Z r (A.2) 
[P] = S  

it is easily seen that their theory applies also to polymers as defined in this 
paper. Following Gruber and Kunz, one then consider the conditions 

S~-(~:) = ~ ] r ~N(m _ z0~: (A.3) 
[-P]~J 

I 1 + z01 > su.p{(1/~)[1 + sj(~:)]) (A.4) 
3 

where the sum runs over all polymers which contains the vertex j and the 
contribution from the monomer is subtracted; N(P) is the number of vertices 
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in P. I f  there exist a positive, real ~: such that S~-(~) is finite for all j and the 
condition (A.4) is fulfilled, then one has existence and analyticity of the 
pressure and correlation functions in the thermodynamic limit; i.e., the same 
type of result which we obtained in Section 2 by applying Ruelle's theory for 
the solubility of the Kirkwood-Salsburg equations to the trimer version. 

The problem is then to work out an upper bound on the sum S(~:) in 
terms of the variables z o , z 1 ,..., zq using the structure of the lattice. For  the 
chain-polymer model it is fairly easy to get a crude estimate. If  q is the coor- 
dination number of the lattice, then the number of chains of length n q- 2 
starting at a fixed point is bounded by q ( q -  1)% while the number of  
polygons of length n-1-2 which include a given point is bounded by 
�89 -- 1) ~. Assuming 

c~ = ~ z 2 ( q -  1) < 1 (A.5) 

one then finds that N(~:) given by 

Zl z q (A.6) g(~) = q [  z 2 ( q - - 1 ) ]  3c~2-- 2aa 1 a 2 
(1 - -  ~)2 - 5 2  (q - 1) 9 1 - -  

is an upper bound on S(~:). One consequently has that the condition (A.4) is 
fulfilled if 

] 1 + z0]  > (1/~:)[1 + N(se)] (A.7)  

and ~: satisfies (A.5). The value of ~ which gives the lowest bound on ] 1 § z 0 ] 
can be found by minimizing the right-hand side of (A.7); since this involves 
solving a third-degree equation, we shall not persue the case further. Better 
bounds on the number of  self-avoiding walks and polygons for particular 
lattices can be found in the literature. (26) 

For  the branching-polymer model, a similar method can be applied 
to estimate S(~). The configuration of bonds at the initial ( j th)  vertex is 
specified first; this gives rise to a total contribution of 

q 

= ~ z, (~) (A.8) 
j= l  

Subsequently, one specifies the configuration at each of the vertices where the 
bonds from the initial vertex end. This can at most give rise to a contribution 

~ ( q  I)  A9) ~'/= Z2'j 
]=1 J 

for each vertex. In the following generations one will still at most get a factor 
per vertex, and one then ends up with 

~'(~) = ~2-q-ql/(1 -- ~r]) (A.10) 



40 Douglas B. Abraham and Ole J. Heilmann 

as an upper bound on S(~) for the branching-polymer model. The minimum 
value of ~-J + ~-1~(~:) is obtained for 

and one gets the bound 

sufficient to satisfy (A.4). 

= [~ + (~.q~)~/2]-~ (A.11) 

] 1 + z01 > ~7 + 2(~7~h) wz (A.12) 
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